Package 'AMA'

February 15, 2012

Type Package

Title Anderson-Moore Algorithm

Version 1.0.8

Depends rJava

Date 2010-10-13

Author Gary Anderson, Aneesh Raghunandan

Maintainer Gary Anderson <gary.anderson@frb.gov>

Description Implements Anderson-Moore algorithm for solving linear rational expectations models. For information about the algorithm and its uses, please see http://www.federalreserve.gov/pubs/oss/oss4/aimindex.html. This version works on both Unix and Windows. For questions about the algorithm and its implementation/applications, please contact gary.anderson@frb.gov. If you are hav-

License GPL 2.0

Copyright The ``C'' code, sparseAim.c, implementing the basic algorithm is in the public domain and may be used freely. However, the authors would appreciate acknowledgement of the source by citation of any of the following papers:

ing technical issues with the package, please contact aneesh.raghunandan@yale.edu.

Anderson, G. and Moore, G. ``A Linear Algebraic Procedure For Solving Linear Perfect Foresight Models.'' Economics Letters, 17, 1985.

Anderson, G. `Solving Linear Rational Expectations Models: A Horse Race." Computational Economics, 2008, vol. 31, issue 2, pp. 95-113

Anderson, G. ``A Reliable and Computationally Efficient Algorithm for Imposing the Saddle Point Property in Dynamic Models." Journal of Economic Dynamics and Control, 2010, vol 34, issue 3, pp. 472-489. \{}n

SystemRequirements Java

LazyLoad yes

R topics documented:

callAMA

callAMA	$Anderson\hbox{-}Moore\ Algorithm$	
---------	------------------------------------	--

Description

Calls the Anderson-Moore Algorithm for the given inputs. callSparseAim is a wrapper to the C and FORTRAN functions which carry out the computation.

Usage

```
callAMA(cofh, neq, leads, lags, qmax)
```

Arguments

cofh	Full H matrix, passed to R columnwise. The H matrix is the matrix $[HT \dots H0 \dots H]$ Must have neq rows and $neq^*(leads+lags+1)$ columns.
neq	Number of equations in the model. Must equal number of rows in H matrix.
leads	Number of leads in the model. Must be a positive integer.
lags	Number of lags in the model. Must be a positive integer.
qmax	Number of elements to allocate for sparse matrix storage. Optional input. Default is neq * leads * neq * (leads $+$ lags).

Details

Note: for details about what the H, B, Q, S, script A, script B etc. matrices are, please see [Anderson 2010]. You will need to separately load in the data file in the form of the "H" matrix that is, the matrix [H_-T ... H_0 ... H_theta]. For details on how to obtain this matrix given a model and data, see the papers referenced and use the genHmat function. This utility may be added to this R package in the future. Output will be a list of "list" objects i.e. the B, S, etc. matrices will be returned as one-dimensional list objects, embedded within a list. It is pretty straightforward to get these into matrix form (use outObject[k][[1]] to get the kth output where outObject is the result of callSparseAim). This applies to the B (structural coefficients) and Q (asymptotic linear constraints) matrices. Alternatively, you can also use the genBmat and genQmat functions to get these matrices directly, as matrix objects. You can also obtain the S (observable structure) matrix as well as the stochastic transition matrices, labelled script A and script B in [Anderson 2010].

Value

The following list object: [cofh, hrows, hcols, neq, leads, lags, nstate, qmax, ptr,cofb, qmat] Where: The first six elements (cofh, ..., lags) are the same as the inputs nstate = leads + lags + 1 qmax is same as on input ptr is a pointer to the integer corresponding to the error code; 0 denotes successful output. See getReturnCode() to "translate". cofb = reduced form coefficients matrix qmat = asymptotic linear constraints matrix

example7

Note

It is preferable to ensure that the matrix H is as you want it before passing it as an argument to this function (and to genBmat, genQmat, etc.) However, if you wish to simply load the matrix H from a text file with neq*(nlag+nlead+1) lines, make sure to store the entries column-wise as this is R's default method of storage.

If you are only interested in, for example, the B matrix or the S matrix, then it is not necessary to call this function. Use genBmat or genScof instead-both call this function as well. To extract a matrix from the jth element of the list returned by this function, use result[j][[1]] (where result is the name of the list).

Author(s)

Gary Anderson and Aneesh Raghunandan

References

Gary S. Anderson. "A reliable and computationally efficient algorithm for imposing the saddle point property in dynamic models." Journal of Economic Dynamics & Control, 2010.

Gary Anderson and George Moore. "An Efficient Procedure for Solving Linear Perfect Foresight Models." Unpublished manuscript, Board of Governors of the Federal Reserve System. 1983.

See Also

```
genBmat, genScof, genQmat, genHmat, getStochTrans, getFactorMatrices
```

Examples

```
hmat = read.table(system.file("extdata/Lcofbob2.cof",package="AMA"))
hrows = 4
hcols = 12
neq = 4
leads = 1
lags = 1
output <- callAMA(hmat, neq, leads, lags)</pre>
```

example7

example7.mod - Text input for example

Description

Contains model definition

Usage

```
example7.mod
```

genBmat

Format

Uses modelez format

Examples

hmat<-genHmat(system.file("extdata/example7.mod",package="AMA"),system.file("extdata/example7params.prm",
bmat<-genBmat(hmat,4,1,1)</pre>

example7params

example7params.txt - Text input for example

Description

Contains parameter assignments for the example 7 matrix assignments.

Format

Rows of assignment statements for model parameters.

Examples

hmat<-genHmat(system.file("extdata/example7.mod",package="AMA"),system.file("extdata/example7params.prm",
bmat<-genBmat(hmat,4,1,1)</pre>

genBmat

Reduced-Form Coefficients Matrix

Description

Computes the reduced-form coefficients matrix ("B") output by the Anderson-Moore Algorithm. Arguments are identical to those passed to callSparseAim.

Usage

```
genBmat(cofh, neq, leads, lags, qmax)
```

Arguments

cofh	Full H matrix, passed to R columnwise. The H matrix is the matrix [HT H_0 H_theta]. Must have neq rows and neq*(leads+lags+1) columns.
neq	Number of equations in the model. Must equal number of rows in H matrix.
leads	Number of leads in the model. Must be a positive integer.
lags	Number of lags in the model. Must be a positive integer.
qmax	Number of elements to allocate for sparse matrix storage. Optional input. Default is neq $*$ leads $*$ neq $*$ (leads $+$ lags).

genHmat 5

Value

```
cofb ("B" matrix)
```

Note

Alternatively, can be called from the object that callAMA returns; i.e. if res is the output of callAMA, then use "bmat = res[10][[1]]".

References

Gary S. Anderson. "A reliable and computationally efficient algorithm for imposing the saddle point property in dynamic models." Journal of Economic Dynamics & Control, 2010.

Gary Anderson and George Moore. "An Efficient Procedure for Solving Linear Perfect Foresight Models." Unpublished manuscript, Board of Governors of the Federal Reserve System. 1983.

See Also

callAMA

Examples

```
bmat <- genBmat(hmat, 4, 1, 1)

hmat<-genHmat(system.file("extdata/example7.mod",package="AMA"),system.file("extdata/example7params.prm",
bmat<-genBmat(hmat,4,1,1)</pre>
```

genHmat

Structural Coefficients Matrix Scripts

hmat <- read.table(system.file("extdata/Lcofbob2.cof",package="AMA"))</pre>

Description

Creates the structural coefficients matrix H, given the model file and parameter values as inputs.

Usage

```
genHmat(modelFileNameFull, params, wantParamVec = FALSE)
```

6 genHmat

Arguments

modelFileNameFull

String object containing the name of the model file. Model file must be

in MODELEZ syntax.

params Either: -A string object containing the name of the parameters file (One

parameter per line, with each line in the format "param = <value>") OR: -A vector containing the parameters. Vector must have names associated with each entry (i.e. names(params) should be correct and complete)

wantParamVec If TRUE, then the output of the function is a list object containing as

its first element the H matrix and as its second element the vector of parameters. Default is FALSE. You should probably set this to TRUE if you're reading in from a parameter file, and leave it as FALSE if you

already have a parameter vector.

Details

Model input file must be in MODELEZ syntax.

Value

Structural coefficients matrix H.

References

For the details of MODELEZ syntax, see for example http://www.federalreserve.gov/pubs/oss/oss4/papers/habitMatlab/habitMatlab.html

For details about the algorithm:

Gary S. Anderson. "A reliable and computationally efficient algorithm for imposing the saddle point property in dynamic models." Journal of Economic Dynamics & Control, 2010.

Gary Anderson and George Moore. "An Efficient Procedure for Solving Linear Perfect Foresight Models." Unpublished manuscript, Board of Governors of the Federal Reserve System. 1983.

See Also

callAMA

Examples

hmat<-genHmat(system.file("extdata/example7.mod",package="AMA"),system.file("extdata/example7params.prm",bmat<-genBmat(hmat,4,1,1)</pre>

genHmatrixScripts 7

genHmatrixScripts

Structural Coefficients Matrix Scripts

Description

Creates an R file in the present working directory which, when run, creates the matrix H.

Usage

```
genHmatrixScripts(modelFileNameFull)
```

Arguments

modelFileNameFull

String object containing the name of the model file. Model file must be in MODELEZ syntax.

Details

Model input file must be in MODELEZ syntax.

Value

An R script, in the current directory, called "<model name>_sparseAimMatrices.r", which when run generates the matrix H.

References

For the details of MODELEZ syntax, see for example http://www.federalreserve.gov/pubs/oss/oss4/papers/habitMatlab/habitMatlab.html

Gary S. Anderson. "A reliable and computationally efficient algorithm for imposing the saddle point property in dynamic models." Journal of Economic Dynamics & Control, 2010.

Gary Anderson and George Moore. "An Efficient Procedure for Solving Linear Perfect Foresight Models." Unpublished manuscript, Board of Governors of the Federal Reserve System. 1983.

See Also

callAMA

Examples

```
genHmatrixScripts(system.file("extdata/example7.mod",package="AMA"))
```

genQmat

genQmat	$A symptotic\ Linear\ Constraints$	

Description

Computes the asymptotic linear constraints matrix ("Q") used by the Anderson-Moore Algorithm. Arguments are identical to those passed to callSparseAim.

Usage

```
genQmat(cofh, neq, leads, lags, qmax)
```

Arguments

cofh	Full H matrix, passed to R columnwise. The H matrix is the matrix $[HT \dots H0 \dots H]$ Must have neq rows and $neq^*(leads+lags+1)$ columns.
neq	Number of equations in the model. Must equal number of rows in H matrix.
leads	Number of leads in the model. Must be a positive integer.
lags	Number of lags in the model. Must be a positive integer.
qmax	Number of elements to allocate for sparse matrix storage. Optional input. Default is neq * leads * neq * (leads + lags).

Value

qmat (asymptotic linear constraints matrix)

Note

Alternatively, can be called from the object that callAMA returns; i.e. if res is the output of callAMA, then use "qmat = res[11][[1]]".

References

Gary S. Anderson. "A reliable and computationally efficient algorithm for imposing the saddle point property in dynamic models." Journal of Economic Dynamics & Control, 2010.

Gary Anderson and George Moore. "An Efficient Procedure for Solving Linear Perfect Foresight Models." Unpublished manuscript, Board of Governors of the Federal Reserve System. 1983.

See Also

callAMA

genScof 9

Examples

```
hmat = read.table(system.file("extdata/Lcofbob2.cof",package="AMA"))
hrows = 4
hcols = 12
neq = 4
leads = 1
lags = 1
Qmatrix <- genQmat(hmat, neq, leads, lags)</pre>
```

genScof

Observable Structure Matrix

Description

Computes the observable structure matrix ("S") using outputs from the Anderson-Moore Algorithm.

Usage

```
genScof(hmat, bmat, neq, leads, lags)
```

Arguments

hmat	Full H matrix, passed to R columnwise. The H matrix is the matrix [HT
	H 0 H thetal.

bmat The B (reduced-form coefficients) matrix.

neq Number of equations in the model.

leads Number of leads in the model. Must be a positive integer.lags Number of lags in the model. Must be a positive integer.

Value

```
cofS (observable structure matrix)
```

Note

Alternatively, can be called from the object that callAMA returns; i.e. if res is the output of callAMA, then use "bmat = res[10][[1]]".

References

Gary S. Anderson. "A reliable and computationally efficient algorithm for imposing the saddle point property in dynamic models." Journal of Economic Dynamics & Control, 2010.

Gary Anderson and George Moore. "An Efficient Procedure for Solving Linear Perfect Foresight Models." Unpublished manuscript, Board of Governors of the Federal Reserve System. 1983.

10 getFactorMatrices

See Also

```
callAMA, genBmat
```

Examples

```
hmat = read.table(system.file("extdata/Lcofbob2.cof",package="AMA"))
hrows = 4
hcols = 12
neq = 4
leads = 1
lags = 1
qmax = 150000
bmat <- genBmat(hmat, neq, leads, lags)
Scoef <- genScof(hmat, bmat, neq, leads, lags)</pre>
```

getFactorMatrices

Shock Factor Matrices for Inhomogeneous Solutions

Description

Computes the exogenous shock scaling (phi) and transfer (F) matrices used in the inhomogeneous case (i.e.

Usage

```
getFactorMatrices(hmat, bmat, neq, leads, lags)
```

Arguments

hmat	Full H matrix, passed to R columnwise. The H matrix is the matrix [HT H_0 H_theta]. Must have neq rows and neq*(leads+lags+1) columns.
bmat	Full B matrix, as generated either by callSparseAim or genBmat.
neq	Number of equations in the model. Must equal number of rows in H matrix.
leads	Number of leads in the model. Must be a positive integer.

Number of lags in the model. Must be a positive integer.

Details

lags

```
[to be filled in]
```

Value

list object containing phi as first element and F as second element.

getReturnCode 11

References

Gary S. Anderson. "A reliable and computationally efficient algorithm for imposing the saddle point property in dynamic models." Journal of Economic Dynamics & Control, 2010.

Gary Anderson and George Moore. "An Efficient Procedure for Solving Linear Perfect Foresight Models." Unpublished manuscript, Board of Governors of the Federal Reserve System. 1983.

See Also

```
callAMA, genBmat
```

Examples

```
hmat = read.table(system.file("extdata/Lcofbob2.cof",package="AMA"))
hrows = 4
hcols = 12
neq = 4
leads = 1
lags = 1
bmat <- genBmat(hmat, neq, leads, lags)
hmat = matrix(as.matrix(hmat), neq)
factorMats <- getFactorMatrices(hmat, bmat, neq, leads, lags)
phi = factorMats[1][[1]]
F = factorMats[2][[1]]</pre>
```

getReturnCode

Return Code

Description

Computes the asymptotic linear constraints matrix ("Q") used by the Anderson-Moore Algorithm. Arguments are identical to those passed to callSparseAim.

Usage

```
getReturnCode(sparseAimObject)
```

Arguments

```
sparseAimObject
```

Output object from callSparseAim.

Details

```
[to be filled in]
```

12 getStochTrans

Value

Return code (corresponds to 0 if call to SparseAIM is successful; prints error message otherwise)

Note

Integer corresponding to error code can be extracted directly from the object that callSparseAim returns; i.e. if res is the output of callSparseAim, then use "returnCode = res[9][[1]]".

References

Gary S. Anderson. "A reliable and computationally efficient algorithm for imposing the saddle point property in dynamic models." Journal of Economic Dynamics & Control, 2010.

Gary Anderson and George Moore. "An Efficient Procedure for Solving Linear Perfect Foresight Models." Unpublished manuscript, Board of Governors of the Federal Reserve System. 1983.

See Also

callAMA

Examples

```
hmat = read.table(system.file("extdata/Lcofbob2.cof",package="AMA"))
hrows = 4
hcols = 12
neq = 4
leads = 1
lags = 1
output <- callAMA(hmat, neq, leads, lags)
errorMsg = getReturnCode(output)</pre>
```

getStochTrans

Stochastic Transition Matrices

Description

Computes the stochastic transition matrices ("script A" and "script B") used by the Anderson-Moore Algorithm. Matrices H and S must already be matrix objects of proper dimension.

Usage

```
getStochTrans(hmat, scof)
```

Arguments

hmat Full H matrix object. The H matrix is the matrix $[H_-T \dots H_-0 \dots H_-]$ (i.e. T lags and theta leads)

scof Matrix S ("observable structure").

Lcofbob2.cof

Details

```
A and B are the solution to [x_t-T+1 ... x_t]' = A[x_t-T ...xt-1]' + B[e_t + psi*(E[z_t|Lt] - E[z_t|Lt-1)]
```

Value

A, B (returned as a "list" object; the first element is A and the second is B.)

References

Gary S. Anderson. "A reliable and computationally efficient algorithm for imposing the saddle point property in dynamic models." Journal of Economic Dynamics & Control, 2010.

Gary Anderson and George Moore. "An Efficient Procedure for Solving Linear Perfect Foresight Models." Unpublished manuscript, Board of Governors of the Federal Reserve System. 1983.

See Also

```
callAMA, genScof, genBmat
```

Examples

```
hmat = read.table(system.file("extdata/Lcofbob2.cof",package="AMA"))
hrows = 4
hcols = 12
neq = 4
hmatrix = matrix((as.matrix(hmat)), neq)
leads = 1
lags = 1
bmat <- genBmat(hmat, neq, leads, lags)
Scoef <- genScof(hmat, bmat, neq, leads, lags)
stochMatrices <- getStochTrans(hmatrix, Scoef)
scriptA = stochMatrices[1][[1]]
scriptB = stochMatrices[2][[1]]</pre>
```

Lcofbob2.cof

Lcofbob2.cof Example Input data

Description

Input matrix for example

Usage

Lcofbob2.cof

Lcofbob2.cof

Format

Matrix elements columnwise.

Examples

```
hmat = read.table(system.file("extdata/Lcofbob2.cof",package="AMA"))
hrows = 4
hcols = 12
neq = 4
leads = 1
lags = 1
output <- callAMA(hmat, neq, leads, lags)</pre>
```